
Sparse and Overcomplete Image Representations

Katrina Evtimova
kve216@nyu.edu

NYU Center for Data Science

Final Report for Communication in the Mathematical Sciences,

NYU Courant Institute of Mathematical Sciences, Spring 2020

1 Introduction

The volume of images generated on a daily basis is astounding. Approximately 350 million
photos are uploaded on Facebook alone every day which amounts to 4000 new photos per
second.1 Large quantities of image data combined with automated systems can be useful in
numerous downstream applications, such as filtering sensitive content or providing a textual
description of image contents for the visually impaired.

Building algorithms that can perform image processing automatically is a long-standing
research problem in the field of computer vision. A crucial part of the problem is figuring
out what kind of useful insights can and need to be extracted from the input data while
keeping in mind the underlying application. For example, if the goal is to assign objects in
an image to different categories (known as image classification) and one of the categories
is zebra, it would be useful to have an algorithm which can detect the striped pattern on
zebras’ coats. The presence of stripes in an image can be thought of as a feature which can
help to determine whether the image contains a zebra or not. The goal of image processing
is to build feature-extraction algorithms that take a d-dimensional input image2 y ∈ Rd and
produce features z ∈ Rq which are useful in some downstream application. We refer to image
features as image representations interchangeably in the remaining of the text.

What are different ways to extract useful features z? Figure 1 shows that one can apply a
convolution to an image in order to extract its edges. This convolution is an example of a
feature extractor hand-crafted to detect a specific feature, and requires domain expertise to
design. Typically, a downstream application requires multiple feature extractors so hand-
crafting them can also take a lot of effort. Using machine learning, it is possible to build
feature extractors from large amounts of image data automatically. One of the most popular
machine learning algorithms for feature extraction is called sparse coding. My research
focuses on improving this method by addressing some of its limitations.

The rest of this document is organized as follows. Section 2 introduces a particular set
of desirable properties for image features z, namely sparsity and overcompleteness. Section

1Source: https://www.omnicoreagency.com/facebook-statistics/.
2Images in computer vision are usually defined as 3D tensors consisting of three color channels, each of

which is a pixel grid of size W ×H. Here we assume an image is flattened to a 1D array of size d = 3×W ×H.

1

mailto:kve216@nyu.edu
https://www.omnicoreagency.com/facebook-statistics/


3 discusses a common way to extract sparse and overcomplete image representations using
sparse coding. Section 4 gives an overview of my research which proposes a novel extension
to the method presented in Section 3. Section 5 discusses future research directions for my
method.

Figure 1: Left: image of an animal. Right: same image after being convolved with an edge

detection convolutional kernel

0 1 0
1 −4 1
0 1 0

. Source: Wikipedia.

2 Sparse and Overcomplete Representations

The motivating question in this section is what useful properties image representations can
have. Similarly to how the simple smiling emoji icon , can convey the complex notions of a
face and happiness, a good image representation can capture more abstract and higher-level
concepts than data at the level of the raw pixels.

Figure 2: An image of a mountain range. Source: Rohit Tandon on Unsplash.

Speaking more formally, image data contains a lot of redundant information. Consider the
picture of a mountain ridge in Figure 2. Pixels that belong to the sky are highly correlated

2

https://commons.wikimedia.org/w/index.php?curid=24301122
https://unsplash.com/@rohittandon?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/


with their neighboring pixels. The same is true for pixels depicting the mountain slopes. This
leads to the idea that an image representation can contain some high-level factors (such as
the presence of a sky or a mountain) that explain its contents in a more concise way than
its raw pixels. This idea is generalized in the notion of sparsity. An image representation is
sparse if only a small number of its components are non-zero for a given input. Intuitively,
sparsity introduces the assumption that only a small number of factors are relevant for a
given image. This makes sparsity a desirable property for image representations as it can
make them more interpretable [1; 2].

An image can contain more than one object and there are many possible objects (trees,
rocks, and snow can appear on a mountain ridge; birds, clouds, and airplanes can appear
in the sky; etc.). This is a motivation to use image representations whose dimensionality
is greater than the dimensionality of the original data. Such representations are called
overcomplete and they are more robust to corruptions in the input image (e.g. missing
pixels) than smaller-dimensional representations [7]. Further support for extracting image
representations which are both sparse and overcomplete comes from biology - the visual
cortex in humans uses such representations [5].

3 Sparse Coding

How can one obtain sparse and overcomplete image representations in practice? In the
discussion below we assume that we are given d-dimensional input images Y ∈ Rd×N where
N is the number of images and we would like to find corresponding sparse and overcomplete
representations Z ∈ Rq×N for each image in the input data (note that q � d).

A popular machine learning approach for solving this problem uses an auxiliary linear oper-
ator D ∈ Rd×q which is parameterized by its elements and is trained to map representations
Z to the original input images Y. In other words, the parameters of D are adjusted to make
the product DZ ∈ Rd×N close to the original images Y. The motivation for introducing the
operator D is that if such an operator exists, then the information contained in the sparse
and overcomplete Z is sufficient to reconstruct the input images Y.

More formally, finding both Z and D happens by solving the following optimization problem:

argmin
D,Z

‖Y −DZ‖22 + α‖Z‖1, (1)

where α ∈ R+ is a regularization parameter. The first term in equation 1 measures how good
the reconstructions DZ are. We refer to this term as the reconstruction error. The second
term forces representations in Z to be sparse by penalizing their l1 norm. The operator D is
usually referred to as a dictionary since it can “decode” the information in Z back to the
space of images. Each column of D can be thought of as a d-dimensional building block or a
“word”. Each column Z[:,i] ∈ Rq corresponds to the representation or “code” of the i-th image
in Y. The non-zero components in Z[:,i] select columns of D relevant for the reconstruction
of the i-th input image Y[:,i].

Solving the optimization problem in equation 1 requires a 2-step iterative procedure. The
first step assumes that the dictionary D is fixed and computes the corresponding codes for

3



Figure 3: Left: Columns of a linear dictionary D ∈ R784×128 trained on grayscale image
patches of size 28× 28. Each column is a square since it is reshaped to match the input patch
size of 28× 28. Right: Dictionary of 128 convolutional filters learned on grayscale images.
Each square is a two-dimensional convolutional filter.

this dictionary:
Ẑ = argmin

Z
‖Y −DZ‖22 + α‖Z‖1, (2)

This is called the inference step. The second step for solving the optimization problem
in equation 1 uses the codes Ẑ computed in step 2 to update the parameters of the linear
dictionary:

D̂ = argmin
D

‖Y −DẐ‖22. (3)

This is called the learning step. Note that the l1 penalty term is missing as the minimization
is done with respect to the elements of D, assuming that the representations Ẑ are fixed. The
two steps are repeated until some convergence criteria is reached. This iterative procedure is
known as sparse coding.

4 Extension of Sparse Coding

This section gives an overview of my research on extracting sparse and overcomplete image
representations with a novel architecture for the decoder D which addresses two limitations
of the sparse coding setup.

4.1 Limitations of Sparse Coding

The elements of a linear dictionary D typically trained through sparse coding are highly
redundant [3]. This is evident in Figure 3 (Left) which shows the columns of such a dictionary
D learned on greyscale image patches.3 In particular, there are dictionary columns which are
shifted versions of each other. This limitation can be overcome by learning a dictionary D of
convolutional filters [6; 3; 8; 9]. Such filters are presented in Figure 3 (Right). The reader
can see that the convolutional filters are more diverse and can detect more complex shapes
which in turn means that the corresponding sparse representations can contain more complex
information.

3The dictionary columns are reshaped to the original 2-dimensional image patch size.

4



Another limitation of the traditional sparse coding setup comes from the lack of com-
positionality. Let us return to the sample image of a mountain range in Figure 2. As we
discussed in section 2, a high-level description of this image can be that it contains two main
parts, mountain and sky. If we take a closer look, we can notice more details: there are
clouds in the sky; some parts of the mountain are covered in snow and others are covered in
trees; and the trees have branches. One can build a hierarchy of the objects in the image
and the relationships between them starting with the higher-level ones and moving to the
finer-detailed ones (e.g. mountain ⊃ trees ⊃ branches ⊃ . . . ). This structure reflects the
compositionality of the world we live in and cannot be captured with a single representation
z ∈ Rq. This observation leads to a motivating idea behind my research — build a hierarchy of
sparser and overcomplete representations for a given image y, namely H(y) = {z0, . . . , zK−1}
for some K > 1, where each representation zi builds on top of and adds finer-grained details
to the information contained in the set of higher-level representations {zj}Kj=i+1 .

4.2 Novel Decoder

We propose a novel decoder D trained to reconstruct a given image input y using the hierarchy
of sparse overcomplete representations H(y). The decoder D is non-linear: it is a composition
of convolutional filters and non-linear operations which allows for a non-linear relationship
between the sparse representations in H(y) and the original image y. The exact architecture
is outside the scope of this text but, at a high level, the decoder D can be regarded as
a function which takes the hierarchy of features H(y) = {z0, . . . , zK−1} as input, applies
different compositions of convolutions and non-linear operations to each zi, and combines the
results to produce a reconstruction D(z0, . . . , zK−1) of the original image y. The structure of
the decoder D allows the information in each representation zi to be complementary to and
finer-grained than the information contained in the representations {zj}Kj=i+1.

It is also important to note that in the case when the dictionary D contains convolutional
filters such as the ones in Figure 3 (Right), the representations zi ∈ H(y) are no longer
q-dimensional vectors but are three-dimensional tensors of size ci×wi×hi where ci, wi, hi ∈ N.
This is due to the fact that each of the ci feature sets of size wi × hi in zi is convolved
with a corresponding convolutional filter in D. Figure 4 shows the sparse and overcomplete
representations H(y) = {z0, z1, z2} for a sample image y. The reader can see that z0 has 4
feature sets, z1 has 14, and Z2 has 42. Also, the dimensionality of each of the representations
in H(y) is greater than the dimensionality of the original image y and approximately 70% of
the components in each zi are equal to 0.

Similarly to the case of sparse dictionary learning from section 3, we compute the hierarchy
of sparse overcomplete representations H(y) = {z0, . . . , zK−1} and the decoder D by solving
the following minimization problem:

argmin
D,z0,...,zK−1

‖Y −D(z0, . . . , zK−1)‖22 + α

K−1∑
i=0

‖zi‖1, (4)

As in the case of sparse coding, the solution requires a procedure which iterates between an
inference step and a learning step. The main difference between our setup and the sparse
coding one is that during the inference step, we minimize with respect to only one of the

5



Figure 4: Input image y along with its hierarchy of sparse overcomplete representations
H(y) = {z0, z1, z2} and reconstruction ŷ. In this example, there are 4 feature sets in z0, 14
in z1, and 42 in z2. Approximately 70% of the components in each sparse representation zi
are equal to 0.

sparse representations zi and we fix the parameters of the decoder D and the elements
of all the other representations {z0, . . . , zi−1, zi+1, . . . , zK−1}. During the learning step, we
update the parameters of the decoder to minimize the expression in formula 4 keeping all the
representations {z0, . . . , zK−1} fixed. This iterative procedure ends when some convergence
criteria is met.

Overall, when compared to a linear dictionary, our convolutional decoder should be able to
capture more complex relationships between the sparse representations in H(y) and images
y and also provide H(y) with a hierarchical structure.

Figure 5: On the left is the original input image. Proceeding to the right are the reconstructions
using all of the representations, then using only one of the representations (z0, z1, and z2
respectively). Using all of the representations provides the best reconstruction, while using
only a single representation produces blurry or abstract results.

6



4.3 Information in the Representations and in the Decoder

This section explores what information is contained in the hierarchy of sparse overcomplete
representations H(y) and in the decoder D proposed in the previous section.

Figure 6: Reconstructions from applying our decoder D to a modified sparse representation
z0 in which we set the middle component of each of the four feature sets in z0 to 1 (black
square) and all the other components across z0 to 0 (grey area). The resulting reconstructions
contain oriented edges.

When we use our decoder to obtain sparse representations, we expect that information about
an image y is distributed across every zi in H(y) and that each zi contains finer-grained
details than any of the representations in the set {zj}K−1j=i+1. To test whether this is the
case, we perform the following experiment: we use information only from representation
zi to reconstruct the original image. In other words, we apply the decoder D to zi only
and ignore any information coming from representations {z0, . . . , zi−1, zi+1, . . . , zK−1} for all
i ∈ {0, . . . , K − 1}. To visualize this, Figure 5 displays an input image of antelopes in the
wild along with its reconstructions from all of the representations and each of the repres
entations separately. When we reconstruct using only the information in representation z0,
we obtain high-frequency information such as edges. Reconstruction from z2 only contains
blurry outlines of the objects in the original image. Additionally, all codes together are
needed to accurately reconstruct the input image. These observations support the idea that
information in the representations for a given input is complementary. We also note that, as
intended, the structure of the representations is hierarchical — representation z2 contains
higher-level information (blurry outlines of objects) while z1 and z0 contain finer-grained
details such as the structure of the antelopes’ horns.

What has our decoder learned? One way to visualize the patterns that can be produced by
our decoder D is to check how each individual element in zi affects the decoder’s reconstruc-
tions. In particular, we consider a setup in which we set the middle component in one of

7



the four feature sets of code z0 (displayed in Figure 4) to 1 and set all the other components
across z0 to 0. When we give this input to the decoder and ignore any input from z1 and z2,
we obtain the reconstructions depicted in Figure 6. They contain oriented edges similar to
the ones captured by simple cells in the visual cortex of mammals [4]. When we perform the
same experiment for feature sets in z1 and z2, we observe similar results. It is remarkable
that the decoder learns to produce such patterns from data alone.

5 Conclusion

We have introduced an extension to the traditional sparse coding setup. Our decoder is
non-linear which means that when compared to a linear dictionary, it can model more complex
relationships between the sparse features and the images they represent. Additionally, instead
of a single sparse representation, our decoder extracts a hierarchy of sparse and overcomplete
representations which complement each other to reconstruct the original image.

One limitation of our approach is that computing the image representations is slow. In
order to reduce the inference time, we are planning to train an encoder which can predict the
representations our model produces directly from the input images.

We are also currently experimenting with ways to measure whether the sparse representations
our model produces are useful in downstream applications such as image classification.
Our hypothesis is that training a logistic regression to predict classes of objects using our
representations, rather than the raw pixel images, would produce a higher prediction accuracy
with the same number of training samples. In other words, we believe that the information
contained in the sparse representations would simplify the task of image classification.

References

[1] Bengio, Y. Learning deep architectures for ai. Foundations and trends in Machine
Learning 2, 1 (2009), 1–127.

[2] Bengio, Y., Courville, A., and Vincent, P. Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine intelligence
35, 8 (2013), 1798–1828.

[3] Kavukcuoglu, K., Sermanet, P., lan Boureau, Y., Gregor, K., Mathieu, M.,
and Cun, Y. L. Learning convolutional feature hierarchies for visual recognition. In
Advances in Neural Information Processing Systems 23, J. D. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R. S. Zemel, and A. Culotta, Eds. Curran Associates, Inc., 2010,
pp. 1090–1098.

[4] Marĉelja, S. Mathematical description of the responses of simple cortical cells. JOSA
70, 11 (1980), 1297–1300.

[5] Olshausen, B. A., and Field, D. J. Sparse coding with an overcomplete basis set: A
strategy employed by v1? Vision research 37, 23 (1997), 3311–3325.

8



[6] Ranzato, M., Poultney, C., Chopra, S., and Cun, Y. L. Efficient learning of
sparse representations with an energy-based model. In Advances in neural information
processing systems (2007), pp. 1137–1144.

[7] Teh, Y. W., Welling, M., Osindero, S., and Hinton, G. E. Energy-based models
for sparse overcomplete representations. Journal of Machine Learning Research 4, Dec
(2003), 1235–1260.

[8] Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R. Deconvolutional
networks. In 2010 IEEE Computer Society Conference on computer vision and pattern
recognition (2010), IEEE, pp. 2528–2535.

[9] Zeiler, M. D., Taylor, G. W., and Fergus, R. Adaptive deconvolutional networks
for mid and high level feature learning. In 2011 International Conference on Computer
Vision (2011), IEEE, pp. 2018–2025.

9


	Introduction
	Sparse and Overcomplete Representations
	Sparse Coding
	Extension of Sparse Coding
	Limitations of Sparse Coding
	Novel Decoder
	Information in the Representations and in the Decoder

	Conclusion

